Evaluation of a New Eigen Decomposition Algorithm for Symmetric Tridiagonal Matrices
نویسندگان
چکیده
This paper focuses on a new extension version of double Divide and Conquer (dDC) algorithm to eigen decomposition. Recently, dDC was proposed for singular value decomposition (SVD) of rectangular matrix. The dDC for SVD consists of two parts. One is Divide and Conquer (D&C) for singular value and the other is twisted factorization for singular vector. The memory usage of dDC is smaller than that of D&C. Both theoretical and running time are also shorter than those of D&C. In this paper, a new dDC for eigen decomposition is proposed. A shift of origin is introduced into our dDC. By some numerical tests, dDC is evaluated with respect to running time and accuracy.
منابع مشابه
On computing the eigenvectors of a class of structured matrices
A real symmetric matrix of order n has a full set of orthogonal eigenvectors. The most used approach to compute the spectrum of such matrices reduces first the dense symmetric matrix into a symmetric structured one, i.e., tridiagonal matrices or semiseparable matrices. This step is accomplished in O(n 3) operations. Once the latter symmetric structured matrix is available, its spectrum is compu...
متن کاملTrading off Parallelism and Numerical Stability
[80] K. Veseli c. A quadratically convergent Jacobi-like method for real matrices with complex conjugate eigenvalues. [82] D. Watkins and L. Elsner. Convergence of algorithms of decomposition type for the eigenvalue problem. [83] Zhonggang Zeng. Homotopy-determinant algorithm for solving matrix eigenvalue problems and its parallelizations. [69] G. Shro. A parallel algorithm for the eigenvalues ...
متن کاملOn tridiagonal matrices unitarily equivalent to normal matrices
In this article the unitary equivalence transformation of normal matrices to tridiagonal form is studied. It is well-known that any matrix is unitarily equivalent to a tridiagonal matrix. In case of a normal matrix the resulting tridiagonal inherits a strong relation between its superand subdiagonal elements. The corresponding elements of the superand subdiagonal will have the same absolute val...
متن کاملOn solving the definite tridiagonal symmetric generalized eigenvalue problem
In this manuscript we will present a new fast technique for solving the generalized eigenvalue problem T x = λSx, in which both matrices T and S are symmetric tridiagonal matrices and the matrix S is assumed to be positive definite.1 A method for computing the eigenvalues is translating it to a standard eigenvalue problem of the following form: L−1T L−T (LT x) = λ(LT x), where S = LLT is the Ch...
متن کاملA QR-decomposition of block tridiagonal matrices generated by the block Lanczos process
For MinRes and SymmLQ it is essential to compute a QR decomposition of a tridiagonal coefficient matrix gained in the Lanczos process. This QR decomposition is constructed by an update scheme applying in every step a single Givens rotation. Using complex Householder reflections we generalize this idea to block tridiagonal matrices that occur in generalizations of MinRes and SymmLQ to block meth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006